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Preface
It’s a world of manufactured goods. Whether we like it or not, we 
all live in a technological society. Every day we come in contact 
with hundreds of manufactured items, made from every possible 
material. From the bedroom to the kitchen to the workplace, we 
use appliances, phones, cars, trains, and planes, TVs, cell phones, 
VCRs, DVDs, furniture, clothing, sports equipment, books and 
more. These goods are manufactured in factories all over the 
world using manufacturing processes.

Basically, manufacturing is a value-adding activity, where 
the conversion of materials into products adds value to the orig-
inal material. Thus, the objective of a company engaged in man-
ufacturing is to add value and to do so in the most efficient 
manner, with the least amount of waste in terms of time, mate-
rial, money, space, and labor. To minimize waste and increase 
productivity, the processes and operations need to be properly 
selected and arranged to permit smooth and controlled flow of 
material through the factory and provide for product variety. 
Meeting these goals requires an engineer who can design and 
operate an efficient manufacturing system. Here are some 
trends that are having impacts on the manufacturing world.

• Manufacturing is a global activity
Manufacturing is a global activity with work often being per-
formed at locations based on proximity to materials, labor, or 
marketplace. US firms often have plants in other countries, 
and foreign companies operate plants in the United States. 
Final product assembly often involves components made at a 
variety of locations.

• It’s a digital world 
Information technology and computers are growing exponen-
tially, with usage in virtually every aspect of manufacturing. 
Design and material selection are performed on computers, and 
this information is then transmitted to manufacture, where 
machines are often operated and controlled by computers. 
Computerized inspection processes ensure product quality.

• Lean manufacturing is widely practiced 
Most manufacturing companies have restructured their 
 factories (their manufacturing systems) to become lean  
producers—making goods of superior quality, cheaper and 
faster, in a flexible way (i.e., they are more responsive to the 
customers). Almost every plant is doing something to become 
leaner. Many have adopted some version of the Toyota 
Production System. More importantly, these manufacturing 
factories are also designed with the internal customer (the 
workforce) in mind, so things such as ergonomics and safety 
are key design requirements. While this book is all about 
materials and processes for making products, the design of 
the factory cannot be ignored when it comes to making the 
external customer happy with the product and the internal 
customer satisfied with the employer.

• New products and materials need new processes 
The number and variety of products and the materials from 
which they are made continues to proliferate, while produc-
tion quantities (lot sizes) have become smaller. Existing pro-
cesses must be modified to be more flexible, and new 
processes must be developed.

• Customers expect great quality 
Consumers want better quality and reliability, so the meth-
ods, processes, and people responsible for that quality must 
improve continually. Reducing the number and magnitude of 
flaws and defects often requires continual changes to the 
manufacturing system.

• Rapid product development is required 
Being competitive often requires reducing the time to market 
for new products. Many companies are taking holistic or sys-
temwide perspectives, including concurrent engineering 
efforts to bring product design and manufacturing closer to 
the customer. Products are being designed to be easier to 
manufacture and assemble (design for manufacture/
assembly). Manufacturing systems are becoming more flexi-
ble (able to rapidly adapt to and assimilate new products).

• 3-D printing and additive manufacturing is exploding 
New and improved processes, new materials, and expanded 
capability machines and equipment are entering the market 
on an almost weekly basis. Technology that once produced 
lookalike prototype parts is now producing fully functional 
products from the full range of materials, including metals, 
ceramics, polymers, and biomaterials.

History of the Text
E. Paul DeGarmo was a mechanical engineering professor at 
the University of California, Berkley, when he wrote the first 
edition of Materials and Processes in Manufacturing, published 
by Macmillan in 1957. The book quickly became the emulated 
standard for introductory texts in manufacturing. Second, third, 
and fourth editions followed in 1962, 1969, and 1974. DeGarmo 
began teaching at Berkeley in 1937, after earning his master’s 
of science degree in mechanical engineering from California 
Institute of Technology. He was a founder of the Department of 
Industrial Engineering (now Industrial Engineering and Opera-
tions Research) and served as its chairman from 1956–1960. He 
was also assistant dean of the College of Engineering for three 
years while continuing his teaching responsibilities.

Paul DeGarmo observed that engineering education had 
begun to place more emphasis on the underlying sciences at 
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the expense of hands-on experience. Most of his students were 
coming to college with little familiarity with materials, machine 
tools, and manufacturing methods that their predecessors had 
acquired through their former “shop” classes. If these engineers 
and technicians were to successfully convert their ideas into real-
ity, they needed a foundation in materials and processes, with 
emphasis on capabilities and limitations. Paul sought to provide 
a text that could be used in either a one- or two-semester course 
designed to meet these objectives. The materials sections were 
written with an emphasis on use and application. Processes and 
machine tools were described in terms of how they worked, what 
they could do, and their relative advantages and limitations, 
including economic considerations. The text was written for stu-
dents who would be encountering the material for the first time, 
providing clear descriptions and numerous visual illustrations.

Paul’s efforts were well-received, and the book quickly 
became the standard text in many schools and curricula. As mate-
rials and processes evolved, the advances were incorporated into 
subsequent editions. Computer usage, quality control, and auto-
mation were added to the text, along with other topics, so that it 
continued to provide state-of-the-art instruction in both materials 
and processes. As competing books entered the market, their sub-
ject material and organization tended to mimic the DeGarmo text.

Paul DeGarmo retired from active teaching in 1971, but he 
continued his research, writing, and consulting for many years. In 
1977, after the publication of the fourth edition of Materials and 
Processes in Manufacturing, he received a letter from Ron Kohser, 
then an assistant professor at the University of Missouri-Rolla, 
containing numerous suggestions regarding the materials chap-
ters. Paul DeGarmo asked Dr. Kohser to rewrite those chapters 
for the upcoming fifth edition. After that edition, Paul decided he 
was really going to retire and, after a national search, recruited J T. 
Black, then a professor at Ohio State, to co-author the book with 
Dr. Kohser.

For the sixth through 12th editions (published in 1984 and 
1988 by Macmillan, 1997 by Prentice Hall, and 2003, 2008 and 2012 
by John Wiley & Sons), Dr. Kohser and Dr. Black have shared the 
responsibility for the text. The chapters about engineering materi-
als, casting, forming, powder metallurgy, additive manufacturing, 
joining and nondestructive testing have been written or revised 
by Dr. Kohser. Dr. Black has responsibility for the introduction and 
chapters about material removal, metrology, surface finishing, qual-
ity control, manufacturing systems design, and lean engineering.

Paul DeGarmo died in 2000, three weeks short of his 
93rd birthday. For the 10th edition, which coincided with the 
50th anniversary of the text, Dr. Black and Dr. Kohser honored 
their mentor with a change in the title to include his name—
DeGarmo’s Materials and Processes in Manufacturing. We recog-
nize Paul DeGarmo for his insight and leadership and are forever 
indebted to him for selecting us to carry on the tradition of his 
book for this, the 13th edition.

Purpose of the Book
The purpose of this book is to provide basic information on 
materials, manufacturing processes and systems to students 
of engineering and technology. The materials section focuses 

on properties and behavior. Aspects of smelting, refining, or 
other material production processes are presented only as 
they affect subsequent use and application. In terms of the 
processes used to manufacture items (converting materials 
into useful shapes with desired properties), this text seeks to 
provide a descriptive introduction to a wide variety of options, 
emphasizing how each process works and its relative advan-
tages and limitations. The goal is to present this material in 
a way that can be understood by individuals seeing it for the 
very first time. This is not a graduate text where the objec-
tive is to thoroughly understand and optimize manufacturing 
processes. Mathematical models and analytical equations are 
used only when they enhance the basic understanding of the 
material. Although the text is introductory in nature, new and 
emerging technologies, such as direct-digital and micro- and 
nano-manufacturing processes, are included as they transition 
into manufacturing usage.

Organization of the Book
E. Paul DeGarmo wanted a book that explained to engineers how 
the things they designed could be made. DeGarmo’s Materials 
and Processes in Manufacturing is still being written to provide 
a broad, basic introduction to the fundamentals of manufactur-
ing. The text begins with a survey of engineering materials, the 
“stuff” that manufacturing begins with, and seeks to provide the 
basic information that could be used to match the properties of 
a material to the service requirements of a component. A variety 
of engineering materials are presented, along with their prop-
erties and means of modifying them. The materials section can 
be used in curricula that lack preparatory courses in metallurgy, 
materials science, or strength of materials, or where the student 
has not yet been exposed to those topics. In addition, various 
chapters in this section can be used as supplements to a basic 
materials course, providing additional information about top-
ics such as heat treatment, plastics, composites, and material 
selection.

Following the materials chapters are sections about cast-
ing, powder metallurgy, forming, material removal, and joining. 
Each section begins with a presentation of the fundamentals on 
which those processes are based. These introductions are fol-
lowed by a discussion about the various process alternatives, 
which can be selected to operate individually or be combined 
into an integrated system.

Reflecting the many recent developments and extreme 
interest in additive manufacturing (often called 3-D print-
ing), the chapter about this technology has been significantly 
updated to present the various technologies in place at the time 
of textbook printing. Uses and applications are summarized, 
including prototype manufacture, rapid tooling, and direct-
digital manufacture. The advantages and limitations of additive 
manufacturing are summarized, along with a description of cur-
rent and future trends.

Manufacturing processes are often designed to accom-
modate specific materials. A separate chapter presents those 
processes that are somewhat unique to plastics, ceramics, and 
composites.
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Chapters have been included to provide information about 
surface engineering, measurements, nondestructive testing, 
and quality control. Engineers need to know how to determine 
process capability and, if they get involved in Six Sigma projects, 
to know what sigma really measures. There is also introductory 
material about surface integrity, since so many processes pro-
duce the finished surface and impart residual stresses to the 
components.

Many of the advances in manufacturing relate to the way 
the various processes are implemented and integrated in a 
production plant or on the shop floor—the design of manufac-
turing systems. Aspects of automation, numerical control, and 
robotics are presented in a separate chapter. In addition, there 
is expanded coverage of lean engineering, in which the mass 
production system is converted into a lean production system, 
capable of rapidly manufacturing variations of a product, small 
quantities of a product, or even one-of-a-kind items on a very 
flexible and continual basis.

With each new edition, new and emerging technology is 
incorporated, and existing technologies are updated to accu-
rately reflect current capabilities. Through its 60-year history 
and 12 previous editions, the DeGarmo text was often the first 
introductory book to incorporate processes such as friction-
stir welding, microwave heating and sintering, and machin-
ing dynamics.

This 13th edition is published as an enhanced eText. 
Each chapter includes review questions that allow the stu-
dent to check their understanding. A number of these ques-
tions include answers the student can access with a click or 
tap. The Problems section further applies this understanding, 
with a bit of focus on application, including a selection of 
new problems added for this edition. An increased number of 
somewhat open-ended case studies also are provided in the 
eText. These have been designed to make students aware of 
the great importance of properly integrating design, material 
selection, and manufacturing to produce cost-competitive, 
reliable products.

The DeGarmo text is intended for use by engineering 
(mechanical, lean, manufacturing, industrial, and materials) 
and engineering technology students, in both two- and four-
year undergraduate degree programs. In addition, the book is 
also used by engineers and technologists in other disciplines 
concerned with design and manufacturing (such as aerospace 
and electronics). Factory personnel find this book to be a valu-
able reference that concisely presents the various production 
alternatives and the advantages and limitations of each. Addi-
tional or more in-depth information about specific materials or 
processes can be found in an expanded list of supplemental ref-
erences that is organized by topic.

Supplements
An instructor solutions manual for instructors adopting the  
text for use in their courses is available on a companion  
website: www.wiley.com/go/black/degarmomaterials13E. Addi-
tional student practice questions also are available from the 
companion site.
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About the Cover
The four boats on the cover are a one-person kayak, a family 
cruiser, a racing-type speed boat, and a large cruise ship. While 
all are types of boats, and share some common functions, they 
also represent a spectrum of manufacturing and operating con-
ditions that are often addressed through different “materials” 
and “processes”.

Light weight is a very desirable property of a kayak since 
it is usually transported by vehicle or by hand to and from the 
location of use. Durability is also required, especially if the use 
includes white water where impacts with rocks are likely to be 
encountered. Because the size is rather small, a single-piece hull 
is typical, eliminating the need for any form of joint. Power is 
provided entirely by the individual or the flow of moving water.

Family cruisers are available in a range of styles and sizes, 
with some even having kitchens, bathrooms, and sleeping quar-
ters. As a consumer product, these types of boats must appeal 
to the buyer by providing the desired features at an acceptable 
price. Appearance is certainly an issue. Power may be provided 
through either inboard or outboard motors, typically of several 
hundred horsepower, and the hulls must be sufficiently durable 
to withstand impacts with various types of floating debris.

The objective of the racing boat is speed, and this drives 
both design and materials. Light weight will enable the boat 

to skim across the surface of the water without creating the 
added drag of water displacement. The immense power, 
often over a thousand horsepower, requires both strength 
and rigidity.

The large cruise ship is quite a contrast in almost every 
area. It is a floating hotel, complete with accompanying shops, 
restaurants, and entertainment and recreational opportunities. 
Its size requires the fabrication of a welded hull. Immense power 
is required not only for propulsion, but also operation of gen-
erators that power utilities and the various amenities through-
out the ship.

Considering these four vessels, there is a significant vari-
ation in production quantities. The kayak is more of a mass-
produced product, with many sharing identical features. The 
cruiser would be produced in smaller quantities, with varia-
tions available to suit the individual buyer. Racing boats are 
often hand crafted by teams of individuals, often with features 
unique to a given boat or type of competition. The cruise ship 
would be fabricated one at a time by a large group of specialists. 
Because of the variation in style and quantity, different types of 
tooling and degrees of automation would be employed. Corro-
sion resistance might not be an issue with a kayak, but would 
certainly be a consideration when the larger boats are used in a 
salt water environment.

Many of the materials and processes described in this book 
find themselves employed in one or more of the four cover 
boats. Each of the material-process combinations would have 
been selected because it offered the best match to the needs of 
the specific product and component. However, as new materi-
als and processes are developed, the “best” solutions may con-
stantly be changing. We invite the reader to open the text and 
explore this fascinating area of engineering and technology.
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P-1

Chapter 1 Review Questions
 Student Solution available in interactive e-text.

 1. What role does manufacturing play relative to the standard of living 
of a country?

 2. Aren’t all goods really consumer goods, depending on how you 
define the customer? Discuss.

 3. The Subway sandwich shop is an example of a job shop, a flow 
shop, or a project shop, which?

 4. How does a system differ from a process? From a machine tool? 
From a job? From an operation?

 5.  Is a cutting tool the same thing as a machine tool? Discuss.

 6.  What are the major classifications of basic manufacturing pro-
cesses?

 7. Casting is often used to produce a complex-shaped part to be made 
from a hard-to-machine metal. How else could the part be made?

 8. In the lost-wax casting process, what happens to the foam?

 9. In making a gold medal, what do we mean by a “relief image” cut 
into the die?

 10. How is a railroad station like a station on an assembly line?

 11.  Because no work is being done on a part when it is in storage, 
it does not cost you anything. True or false? Explain.

 12. What forming processes are used to make a paper clip?

 13. What is tooling in a manufacturing system?

 14. It is acknowledged that chip-type machining is basically an ineffi-
cient process. Yet it is probably used more than any other to produce 
desired shapes. Why?

 15. Compare Figures 1.1 and 1.16. What are the stages of the product 
life cycle for a computer?

 16. In a modern safety razor with three or four blades that sells for $1, 
what do you think the cost of the blades might be?

 17.  List three purposes of packaging operations.

 18. Assembly is defined as “the putting together of all the different parts 
to make a complete machine.” Think of (and describe) an assembly pro-
cess. Is making a club sandwich an assembly process? What about carv-
ing a turkey? Is this an assembly process?

 19. What are the physical elements in a manufacturing system?

 20. In the production system, who usually figures out how to make the 
product?

 21.  In Figure 1.8, what do the lines connecting the processes  
represent?

 22. Characterize the process of squeezing toothpaste from a tube 
(extrusion of toothpaste) using Table 1.4 as a guideline. See the index for 
help on extrusion.

 23. It has been said that low-cost products are more likely to be more 
carefully designed than high-priced items. Do you think this is true? Why 
or why not?

 24. Proprietary processes are closely held or guarded company secrets. 
The chemical makeup of a lubricant for an extrusion process is a good 
example. Give another example of a proprietary process.

 25. If the rolls for the cold-rolling mill that produces the sheet metal 
used in your car cost $300,000 to $400,000, how is it that your car can still 
cost less than $20,000?

 26.  Make a list of service systems, giving an example of each.

 27. What is the fundamental difference between a service system and a 
manufacturing system?

 28. In the process of buying a calf, raising it to a cow, and disassembling 
it into “cuts” of meat for sale, where is the “value added”?

 29. What kind of process is powder metallurgy: casting or forming?

 30. In view of Figure 1.2, who really determines the selling price per unit?

 31. What costs make up manufacturing cost (sometimes called factory 
cost)?

 32.  What are major phases of a product life cycle?

 33. How many different manufacturing systems might be used to make 
a component with annual projected sales of 16,000 parts per year with 
10 to 12 different models (varieties)?

 34. In general, as the annual volume for a product increases, the unit 
cost decreases. Explain.
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P-2 CHAPTER 1  Problems

Chapter 1 Problems
 1. The Toyota truck plant in Indiana produces 150,000 trucks per year.  
The plant runs one eight-hour shift and makes 400 trucks per day.  
About 1300 people work on the final assembly line. Each truck has  
about 20 direct labor hours per car in it.

a.  Assuming the truck sells for $26,000 and workers earn $50 per 
hour in wages and benefits, what percentage of the cost of the truck 
is in direct labor?

b. What is the production rate of the final assembly line?

 2. A company is considering making automobile bumpers from alu-
minum instead of from steel. List some of the factors it would have to 
consider in arriving at its decision.

 3. Many companies are critically examining the relationship of prod-
uct design to manufacturing and assembly. Why do they call this concur-
rent engineering?

 4. We can analogize your university to a manufacturing system that 
produces graduates. Assuming that it takes 4 years to get a college 
degree and that each course really adds value to the student’s knowl-
edge base, what percentage of the 4 years is “value adding” (percent-
age of time in class plus two hours of preparation for each hour in class)?

 5. What kind of manufacturing system (design) is your university?

 6. What are the major process steps in the assembly of a subway  
sandwich?

 7. What is the relationship between Figures 1.2 and 1.4?

 8. Recently, National Geographic magazine asked the US librarian 
of Congress to compile a listing of the 10 most meaningful advances 
in  history—inventions and innovations of significance to modern life. 
The “Top Ten Innovations” list that was compiled included: (1) Printing 
press, (2) Light bulb, (3) Airplane, (4) Personal computer, (5) Vaccines,  
(6) Automobile, (7) Clock, (8) Telephone, (9) Refrigeration, and (10) Camera.

 1. Select one of the items from the list and discuss the materials or 
materials advances that enabled its creation.

 2. For the same item selected in Part 1, discuss the manufacturing 
processes, or process advances, that enabled its creation.

 3. If new items were to be added to the list over the next 10 to 20 
years, what do you think they would be?

 4. For items suggested in Part 3, what materials or process advanc-
es would have been instrumental in their development and use?
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Chapter 1 CASE STUDY Famous Manufacturing Engineers
Manufacturing engineering is that engineering function charged with 
the responsibility of interpreting product design in terms of manufactur-
ing requirements and process capability. Specifically, the manufacturing 
engineer (MfE) may:

• Determine how the product is to be made in terms of specific manu-
facturing processes.

• Design workholding and work transporting tooling or containers.

• Select the tools (including the tool materials) that will machine or 
form the work materials.

• Select, design, and specify devices and instruments that inspect prod-
ucts that have been manufactured to determine their quality.

• Design and evaluate the performance of the manufacturing system.

• Perform all these functions (and many more) related to the actual 
making of the product at the most reasonable cost per unit without 
sacrifice of the functional requirements or the users’ service life.

There’s no great glory in being a great MfE. If you want to be an 
MfE, you had better be ready to get your hands dirty. Of course, there 
are exceptions. There have been some very famous MfEs. For example:

• John Wilkinson of Bersham, England, built a boring mill in 1775 to bore 
the cast iron cylinders for James Watt’s steam engine. How good was 
this machine?

• Eli Whitney was said to have invented the cotton gin, a machine 
to separate seeds from cotton. His machine was patented but 
was so simple, anyone could make one. He was credited with  
“interchangeability”—but we know Thomas Jefferson observed inter-
changeability in France in 1785 and probably the French gunsmith 
LeBlanc is the real inventor here. Jefferson tried to bring the idea 
to America, and Whitney certainly did. He took 10 muskets to Con-
gress, disassembled them, and scattered the pieces. Interchangeable 
parts permitted them to be reassembled. He was given a contract for  
2000 guns to be made in 2 years. But what is the rest of his story?

• Joe Brown started a business in Rhode Island in 1833 making lathes 
and small tools as well as timepieces (watchmaker). Lucian Sharp 
joined the company in 1848 and developed a pocket sheet metal gage 
in 1877 and a 1-in. micrometer, and in 1862 developed the universal 
milling machine.

• At age 16, Sam Colt sailed to Calcutta on the Brig “Curve.” He whittled 
a wood model of a revolver on this voyage. He saved his money and 
had models of a gun built in Hartford by Anson Chase, for which he 
got a patent. He set up a factory in New Jersey—but he could not sell 

his guns to the Army because they were too complicated. He sold to 
the Texas Rangers and the Florida Frontiersmen, but he had to close 
the plant. In 1846, the Mexican war broke out. General Zachary Tay-
lor and Captain Sam Walters wanted to buy guns. Colt had none but 
accepted orders for 1000 guns and constructed a model (Walker Colt); 
he arranged to have them made at Whitney’s (now 40-year-old) plant 
in Whitneyville. Here he learned about mass production methods. In 
1848, he rented a plant in Hartford, Connecticut, and the Colt legend 
spread. In 1853, he had built one of the world’s largest arms plant in 
Connecticut, which had 1400 machine tools. Colt helped start the 
careers of

• E. K. Root, mechanic and superintendent, paying him a salary of 
$25,000 in the 1800s. Abolished hand work—jigs and fixtures.

• Francis Pratt and Amos Whitney—famous machine tool builders.

• William Gleason—gear manufacturer.

• E. P. Bullard—invented the Mult–An–Matic Multiple spindle machine, 
which cut the time to make a flywheel from 18 minutes to slightly 
over 1 minute. Sold this to Ford.

• Christopher Sponer.

• E. J. Kingsbury—invented a drilling machine to drill holes through 
toy wheel hubs that had a spring-loaded cam that enabled the 
head to sense the condition of the casting and modify feed rate 
automatically.

Now here are some more names from the past of famous and not-
so-famous manufacturing, mechanical, and industrial engineers. Relate 
them to the development of manufacturing processes or manufacturing 
system designs.

• Eli Whitney

• Henry Ford

• Charles Sorenson

• Sam Colt

• John Parsons

• Eiji Toyoda

• Elisha Root

• John Hall

• Thomas Blanchard

• Fred Taylor

• Taiichi Ohno

• Ambrose Swasey

DeGarmo13e_c01_CS.indd   1 3/7/2019   9:48:08 PM



CHAPTER 1

1

1.1 Materials, Manufacturing, 
and the Standard of Living

Manufacturing is critical to a country’s economic welfare and 
standard of living because the standard of living in any soci-
ety is determined, primarily, by the goods and services that are 
available to its people. Manufacturing companies contribute 
about 20% of the GNP, employ about 18% of the workforce, and 
account for 40% of the exports of the United States. In most 
cases, materials are utilized in the form of manufactured goods. 
Manufacturing and assembly represent the organized activi-
ties that convert raw materials into salable goods. The manu-
factured goods are typically divided into two classes: producer 
goods and consumer goods. Producer goods are those goods 
manufactured for other companies to use to manufacture 
either producer or consumer goods. Consumer goods are those 
purchased directly by the consumer or the general public. For 
example, someone has to build the machine tool (a lathe) that 
produces (using machining processes) the large rolls that are 
sold to the rolling mill factory to be used to roll the sheets of 
steel that are then formed (using dies) into body panels of your 
car. Similarly, many service industries depend heavily on the 
use of manufactured products, just as the agricultural industry 
is heavily dependent on the use of large farming machines for 
efficient production.

Processes convert materials from one form to another add-
ing value to them. The more efficiently materials can be pro-
duced and converted into the desired products that function 
with the prescribed quality, the greater will be the companies’ 
productivity and the better will be the standard of living of the 
employees.

The history of mankind has been linked to our ability to 
work with tools and materials, beginning with the Stone Age 
and ranging through the eras of copper and bronze, the Iron 

Age, and recently the age of steel. Although ferrous materi-
als still dominate the manufacturing world, we have entered 
the age of tailor-made plastics, composite materials, and 
exotic alloys.

A good example of this progression is shown in Figure 1.1. 
The goal of the manufacturer of any product or service is to con-
tinually improve. For a given product or service, this improve-
ment process usually follows an S-shaped curve, as shown in 
Figure  1.1a, often called a product life-cycle curve. After the 
initial invention/creation and development, a period of rapid 
growth in performance occurs, with relatively few resources 
required. However, each improvement becomes progressively 
more difficult. For a significant gain, more money and time and 
innovation are required. Finally, the product or service enters 
the maturity phase, during which additional performance gains 
become very costly.

For example, in the automobile tire industry, Figure  1.1b 
shows the evolution of radial tire performance from its birth 
in 1946 to the present. Growth in performance is actually the 
superposition of many different improvements in material, pro-
cesses, and design.

These innovations, known as sustaining technology, 
serve to continually bring more value to the consumer of exist-
ing products and services. In general, sustaining manufacturing 
technology is the backbone of American industry and the ever-
increasing productivity metric.

Although materials are no longer used only in their natu-
ral state, there is obviously an absolute limit to the amounts of 
many materials available here on earth. Therefore, as the variety 
of man-made materials continues to increase, resources must 
be used efficiently and recycled whenever possible. Of course, 
recycling only postpones the exhaustion date.

Like materials, processes have also proliferated greatly in the 
past 50 years, with new processes being developed to handle the 
new materials more efficiently and with less waste. A good exam-
ple is the laser, invented around 1960, which now finds many uses 
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in machining, measurement, inspection, heat treating, welding, 
additive manufacturing, surgery, and many more. New develop-
ments in manufacturing technology often account for improve-
ments in productivity. Even when the technology is proprietary, 
the competition often gains access to it, usually quite quickly.

Starting with the product design, materials, labor, and 
equipment are interactive factors in manufacturing that must 
be combined properly (integrated) to achieve low cost, superior 
quality, and on-time delivery. Figure  1.2 shows a breakdown 
of costs for a product (like a car). Typically about 40% of the 
selling price of a product is the manufacturing cost. Because 
the selling price determines how much the customer is will-
ing to pay, maintaining the profit often depends on reducing 
manufacturing cost. The internal customers who really make 
the product are called direct labor. They are usually the targets 
of automation, but typically they account for only about 10% of 
the manufacturing cost, even though they are the main element 
in increasing productivity. In Chapters 42 and 43, a new manu-
facturing strategy is presented that attacks the materials cost, 
indirect costs, and general administration costs, in addition to 
labor costs. The materials costs include the cost of storing and 
handling the materials within the plant. The strategy depends 
on a new factory design and is called lean production.

Referring again to the total expenses shown in Figure 1.2 
(selling price less profit), about 68% of dollars are spent on 
people, but only 5% to 10% on director labor, the breakdown 

for the rest being about 15% for engineers and 25% for mar-
keting, sales, and general management people. The average 
labor cost in manufacturing in the United States is $10 to 
$25 per hour for hourly workers. Reductions in direct labor 
will have only marginal effects on the total people costs. The 
optimal combination of factors for producing a small quantity 
of a given product may be very inefficient for a larger quan-
tity of the same product. Consequently, a systems approach, 
taking all the factors into account, must be used. This requires 
a sound and broad understanding on the part of the decision 
makers on the value of materials, processes, and equipment to 
the company, and their customers, accompanied by an under-
standing of the manufacturing systems. Materials, processes, 
and manufacturing systems are what this book is all about.

1.2 Manufacturing and 
Production Systems

Manufacturing is the economic term for making goods and ser-
vices available to satisfy human wants. Manufacturing implies 
creating value by applying useful mental or physical labor. 
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 FIGURE 1.1  (a) A product development curve usually has an “S”-shape. (b) Example of the S-curve for the 
radial tire. (Courtesy of Bart Thomas, Michelin.)
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The manufacturing processes are arranged in the factory to 
form a manufacturing system (MS). The manufacturing system 
is a complex arrangement of physical elements characterized 
by measurable parameters. The manufacturing system takes 
inputs and produces products for the external customer, as 
shown in Figure 1.3.

The inputs to the manufacturing system includes materi-
als, information, and energy. The system is a complex set of 
elements that includes machines (or machine tools), people, 
materials-handling equipment, and tooling. Workers are the 
internal customers. They process materials within the system, 
which gain value as the material progresses from process to 
machine. Manufacturing system outputs may be finished or 
semifinished goods. Semifinished goods serve as inputs to 
some other process at other locations. Manufacturing systems 
are dynamic, meaning that they must be designed to adapt 
constantly to change. Many of the inputs cannot be fully con-
trolled by management, and the effect of disturbances must be 
counteracted by manipulating the controllable inputs or the 
system itself. Controlling the input material availability and/
or predicting demand fluctuations may be difficult. A national 
economic decline or recession can cause shifts in the business 
environment that can seriously change any of these inputs. In 
manufacturing systems, not all inputs are fully controllable. To 
understand how manufacturing systems work and be able to 
design manufacturing systems, computer modeling (simula-
tion) and analysis are used. However, modeling and analysis are 
difficult because

1. In the absence of a system design, the manufacturing sys-
tems can be very complex, be difficult to define, and have 
conflicting goals.

2. The data or information may be difficult to secure, inaccu-
rate, conflicting, missing, or even too abundant to digest 
and analyze.

3. Relationships may be awkward to express in analytical 
terms, and interactions may be nonlinear; thus, many ana-
lytical tools cannot be applied with accuracy. System size 
may inhibit analysis.

4. Systems are always dynamic and change during analysis. 
The environment can change the system, and vice versa.

5. All systems analyses are subject to errors of omission (miss-
ing information) and commission (extra information). 
Some of these are related to breakdowns or delays in feed-
back elements.

Because of these difficulties, digital simulation has become an 
important technique for manufacturing systems modeling and 
analysis as well as for manufacturing system design.

The entire company is often referred to as the enterprise 
or the production system. The production system services the 
manufacturing system, as shown in Figure  1.4. In this book, 
a production system will refer to the total company and will 
include within it the manufacturing system. The production sys-
tem includes the manufacturing system plus all the other func-
tional areas of the plant for information, design, analysis, and 
control. These subsystems are connected by various means to 
each other to produce either goods or services or both.

Goods refers to material things. Services are nonmate-
rial things that we buy to satisfy our wants, needs, or desires. 
Service production systems include transportation, banking, 
finance, savings and loan, insurance, utilities, health care, edu-
cation, communication, entertainment, sporting events, and 
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so forth. They are useful labors that do not directly produce a 
product. Manufacturing has the responsibility for designing pro-
cesses (sequences of operations and processes) and systems to 
create (make or manufacture) the product as designed. The sys-
tem must exhibit flexibility to meet customer demand (volumes 
and mixes of products) as well as changes in product design.

As shown in Table  1.1, production terms have a definite 
rank of importance, somewhat like rank in the army. Confusing 
system with section is similar to mistaking a colonel for a cor-
poral. In either case, knowledge of rank is necessary. The terms 
tend to overlap because of the inconsistencies of popular usage.

An obvious problem exists here in the terminology of manu-
facturing and production. The same term can refer to different 
things. For example, drill can refer to the machine tool that does 
these kinds of operations; the operation itself, which can be done 
on many different kinds of machines; or the cutting tool, which 
exists in many different forms. It is therefore important to use 
modifiers whenever possible: “Use the radial drill press to drill 
a hole using a 1-in.-diameter spade drill.” The emphasis of this 

book will be directed toward the understanding of the processes, 
machines, and tools required for manufacturing and how they 
interact with the materials being processed. In the last chapters 
of the book, an introduction to systems aspects is presented.

Production System—The Enterprise
The highest-ranking term in the hierarchy is production 
 system. A production system includes people, money, equip-
ment, materials and supplies, markets, management, and 
the manufacturing system. In fact, all aspects of commerce 
(manufacturing, sales, advertising, profit, and distribution) 
are involved. Table  1.2 provides a partial list of production 
systems. Another term for them is “industries” as in the “aero-
space industry.” Further discussion on the enterprise is found 
in Chapter 42.

Much of the information given for manufacturing sys-
tems is relevant to the service system. Most require a service 
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production system (SPS) for proper product sales. This is par-
ticularly true in industries, such as the food (restaurant) indus-
try, in which customer service is as important as quality and 
on-time delivery. Table  1.3 provides a short list of service 
industries.

Manufacturing Systems
A collection of operations and processes used to obtain a desired 
product(s) or component(s) is called a manufacturing system. 
The manufacturing system design is therefore the arrangement 
of the manufacturing processes in the factory. Control of a sys-
tem applies to overall control of the whole, not merely of the 
individual processes or equipment. The entire manufacturing 
system must be controlled to schedule and control the factory—
all its inputs, inventory levels, product quality, output rates, 
and so forth.

Manufacturing Processes
A manufacturing process converts unfinished materials to 
finished products, often using machines or machine tools. 
For example, injection molding, die casting, progressive 
stamping, milling, arc welding, painting, assembling, testing, 
pasteurizing, homogenizing, and annealing are commonly 

TABLE 1.1  Production Terms for Manufacturing Production Systems

Term Meaning Examples
Production system; the 
enterprise

All aspects of workers, machines, and information, 
considered collectively, needed to manufacture parts or 
products; integration of all units of the system is critical.

Company that makes engines, assembly plant, 
glassmaking factory, foundry; sometimes called 
the enterprise or the business.

Manufacturing system (sequence 
of operations, collection of 
processes) or factory

The collection of manufacturing processes and operations 
resulting in specific end products; an arrangement or 
layout of many processes, materials-handling equipment, 
and operators.

Rolling steel plates, manufacturing of 
automobiles, series of connected operations or 
processes, a job shop, a flow shop, a continuous 
process.

Machine or machine tool or 
manufacturing process

A specific piece of equipment designed to accomplish 
specific processes, often called a machine tool; machine 
tools linked together to make a manufacturing system.

Spot welding, milling machine, lathe, drill press, 
forge, drop hammer, die caster, punch press, 
grinder, etc.

Job (sometimes called a station; 
a collection of tasks)

A collection of operations done on machines or a collection 
of tasks performed by one worker at one location on the 
assembly line.

Operation of machines, inspection, final 
assembly; e.g., forklift driver has the job of 
moving materials.

Operation (sometimes called a 
process)

A specific action or treatment, often done on a machine, 
the collection of which makes up the job of a worker.

Drill, ream, bend, solder, turn, face, mill extrude, 
inspect, load.

Tools or tooling Refers to the implements used to hold, cut, shape, or 
deform the work materials; called cutting tools if referring 
to machining; can refer to jigs and fixtures in workholding 
and punches and dies in metal forming.

Grinding wheel, drill bit, end milling cutter, die, 
mold, clamp, three-jaw chuck, fixture.

TABLE 1.2  Partial List of Production Systems for 
Producer and Consumer Goods

Aerospace and airplanes Foods (canned, dairy, meats, etc.)
Appliances Footwear
Automotive (cars, trucks, vans, 
wagons, etc.)

Furniture

Beverages Glass
Building supplies (hardware) Hospital suppliers
Cement and asphalt Leather and fur goods
Ceramics Machines
Chemicals and allied industries Marine engineering
Clothing (garments) Metals (steel, aluminum, etc.)
Construction Natural resources (oil, coal, 

forest, pulp and paper)
Construction materials (brick,  
block, panels)

Publishing and printing (books, 
CDs, newspapers)

Drugs, soaps, cosmetics Restaurants
Electrical and microelectronics Retail (food, department stores, 

etc.)
Energy (power, gas, electric) Ship building
Engineering Textiles
Equipment and machinery 
(agricultural, construction and 
electrical products, electronics, 
household products, industrial 
machine tools, office equipment, 
computers, power generators)

Tire and rubber
Tobacco
Transportation vehicles (railroad, 
airline, truck, bus)
Vehicles (bikes, cycles, ATVs, 
snowmobiles)

TABLE 1.3  Types of Service Industries

Advertising and marketing
Communication (telephone, computer networks)
Education
Entertainment (radio, TV, movies, plays)
Equipment and furniture rental
Financial (banks, investment companies, loan companies)
Health care
Insurance
Transportation and car rental
Travel (hotel, motel, cruise lines)
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called processes or manufacturing processes. The term 
process can also refer to a sequence of steps, processes, or 
operations for production of goods and services, as shown 
in Figure 1.5, which shows the processes to manufacture an 
Olympic-type medal.

A machine tool is an assembly of related mechanisms on 
a frame or bed that together produce a desired result. Gener-
ally, motors, controls, and auxiliary devices are included. Cut-
ting tools and workholding devices are considered separately.

A machine tool may do a single process (e.g., cutoff saw) 
or multiple processes, or it may manufacture an entire compo-
nent. Machine sizes vary from a tabletop drill press to a 1000-ton 
forging press.

Job and Station
In the classical manufacturing system, a job is the total of the 
work or duties a worker performs. A station is a location or area 
where a production worker performs tasks or a job.

A job is a group of related operations and tasks performed 
at one station or series of stations in cells. For example, the job 
at a final assembly station may consist of four tasks:

1. Attach carburetor
2. Connect gas line
3. Connect vacuum line
4. Connect accelerator rod

The job of an operator of a turret lathe (a semiautomatic 
machine tool) may include the following operations and tasks: 
load, start, index and stop, unload, inspect. The operator’s job 
may also include setting up the machine (i.e., getting ready for 
manufacturing). Other machine operations include drilling, 
reaming, facing, turning, chamfering, and knurling. The opera-
tor can run more than one machine or service at more than 
one station.

The terms job and station have been carried over to 
unmanned machines. A job is a group of related operations 
generally performed at one station, and a station is a position 
or location in a machine (or process) where specific opera-
tions are performed. A simple machine may have only one sta-
tion. Complex machines can be composed of many stations. 
The job at a station often includes many simultaneous opera-
tions, such as “drill all five holes” by multiple spindle drills. In 
the planning of a job, a process plan is often developed (by 
the engineer) to describe how a component is made using 
a sequence of operations. The engineer begins with a part 
drawing and selects the raw material. Follow in Figure 1.6 the 
sequence of machining operations that transforms the cylin-
der in a pinion shaft.

Operation
An operation is a distinct action performed to produce a desired 
result or effect. Typical manual machine operations are loading 
and unloading. Operations can be divided into suboperational 
elements. For example, loading is made up of picking up a part, 

placing part in jig, and closing jig. However, suboperational ele-
ments will not be discussed here.

Operations categorized by function are

1. Materials handling and transporting: change in the location 
or position of the product.

2. Processing: change in volume and quality, including assem-
bly and disassembly; can include packaging.

3. Packaging: special processing; may be temporary or perma-
nent for shipping.

4. Inspecting and testing: comparison to the standard or check 
of process behavior.

5. Storing: time lapses without further operations.

These basic operations may occur more than once in some 
processes, or they may sometimes be omitted. Remember, it is 
the manufacturing processes that add value and quality to the 
materials. Defective processes produce poor quality or scrap. 
Other operations may be necessary but do not, in general, add 
value, whereas operations performed by machine tools that do 
material processing usually do add value.

Treatments
Treatments operate continuously on the workpiece. They usu-
ally alter or modify the product-in-process without tool contact. 
Heat treating, curing, galvanizing, plating, finishing, (chemical) 
cleaning, and painting are examples of treatments. Treatments 
usually add value to the part.

These processes are difficult to include in manufacturing 
cells because they often have long cycle times, are hazardous 
to the workers’ health, or are unpleasant to be around because 
of high heat or chemicals. They are often done in large tanks or 
furnaces or rooms. The cycle time for these processes may dic-
tate the cycle times for the entire system. These operations also 
tend to be material specific. Many manufactured products are 
given decorative and protective surface treatments that control 
the finished appearance. A customer may not buy a new vehicle 
because it has a visible defect in the chrome bumper, although 
this defect will not alter the operation of the car.

Tools, Tooling, and Workholders
The lowest mechanism in the production term rank is the 
tool. Tools are used to hold, cut, shape, or form the unfinished 
product. Common hand tools include the saw, hammer, screw-
driver, chisel, punch, sandpaper, drill, clamp, file, torch, and 
grindstone.

Basically, mechanized versions of such hand tools are 
called cutting tools. Some examples of tools for cutting are drill 
bits, reamers, single-point turning tools, milling cutters, saw 
blades, broaches, and grinding wheels. Noncutting tools for 
forming include extrusion dies, punches, and molds.

Tools also include workholders, jigs, and fixtures. These 
tools and cutting tools are generally referred to as the tooling, 
which usually must be considered (purchased) separate from 
machine tools. Cutting tools wear and fail and must be periodi-
cally replaced before parts are ruined. The workholding devices 
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 FIGURE 1.5  The manufacturing process for making Olympic medals has many steps or operations,  
beginning with design and including die making. (Courtesy J. T. Black.)
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must be able to locate and secure the workpieces during pro-
cessing in a repeatable, mistake-proof way.

Tooling for Measurement and Inspection
Measuring tools and instruments are also important for manu-
facturing. Common examples of measuring tools are rulers, cali-
pers, micrometers, and gages. Precision devices that use laser 
optics or vision systems coupled with sophisticated electronics 
are becoming commonplace. Vision systems and coordinate 
measuring machines are becoming critical elements for achiev-
ing superior quality.

Integrating Inspection into the Process
The integration of the inspection process into the manufactur-
ing process or the manufacturing system is a critical step toward 
building products of superior quality. An example will help. 

Compare an electric typewriter with a computer that does word 
processing. The electric typewriter is flexible. It types whatever 
words are wanted in whatever order. It types a specific font and 
type size. The computer can do all of this but can also, through 
its software, change font or type size, set italics; set bold, dark 
type; vary the spacing to justify the right margin; plus many 
other functions. It checks immediately for incorrect spelling and 
other defects like repeated words. The software system provides 
a signal to the hardware to flash the word so that the operator 
will know something is wrong and can make an immediate cor-
rection. If the system were designed to prevent the typist from 
typing repeated words, then this would be a poka-yoke, a term 
meaning defect prevention. Defect prevention is better than 
immediate defect detection and correction. Ultimately, the sys-
tem should be able to forecast the probability of a defect, cor-
recting the problem at the source. This means that the typist 
would have to be removed from the process loop, perhaps by 
having the system type out what it is told (convert oral to written 
directly). Poka-yoke devices and source inspection techniques 
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 FIGURE 1.6  The component called a pinion shaft is manufactured by a “sequence of operations” to 
produce various geometric surfaces. The engineer determines the sequence and selects the processes and 
tooling needed to make the component.
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are keys to designing manufacturing systems that produce 
superior-quality products at low cost.

Products and Fabrications
In manufacturing, material things (goods) are made to satisfy 
human wants. Products result from manufacturing, which 
also includes conversion processes such as refining, smelting, 
and mining.

Products can be manufactured by fabricating or by pro-
cessing. Fabricating is the manufacture of a product from 
pieces such as parts, components, or assemblies. Individual 
products or parts can also be fabricated. Separable discrete 
items such as tires, nails, spoons, screws, refrigerators, or hinges 
are fabricated.

Processing is also used to refer to the manufacture of a 
product by continuous means, or by a continuous series of oper-
ations, for a specific purpose. Continuous items such as steel 
strip, beverages, breakfast foods, tubing, chemicals, and petro-
leum are “processed.” Many processed products are marketed 
as discrete items, such as bottles of beer, bolts of cloth, spools 
of wire, and sacks of flour.

Separable discrete products, both piece parts and assem-
blies, are fabricated in a plant, factory, or mill, for instance, a 
textile or rolling mill. Products that flow (liquids, gases, grains, 
or powders) are processed in a plant or refinery. The continuous-
process industries such as petroleum and chemical plants are 
sometimes called processing industries or flow industries.

To a lesser extent, the terms fabricating industries and 
manufacturing industries are used when referring to fabricators 
or manufacturers of large products composed of many parts, 
such as a car, a plane, or a tractor. Manufacturing often includes 
continuous-process treatments such as electroplating, heating, 
demagnetizing, and extrusion forming.

Construction or building is making goods by means other 
than manufacturing or processing in factories. Construction is 
a form of project manufacturing of useful goods like houses, 
highways, and buildings. The public may not consider construc-
tion as manufacturing because the work is not usually done in a 
plant or factory, but it can be. Companies can now build a cus-
tom house of any design in a factory, truck it to the building site, 
and assemble it on a foundation in two or three weeks.

Agriculture, fisheries, and commercial fishing produce real 
goods from useful labor. Lumbering is similar to both agriculture 
and mining in some respects, and mining should be considered 
processing. Processes that convert the raw materials from agri-
culture, fishing, lumbering, and mining into other usable and 
consumable products are also forms of manufacturing.

Workpiece and Its Configuration
In the manufacturing of goods, the primary objective is to pro-
duce a component having a desired geometry, size, and fin-
ish. Every component has a shape that is bounded by various 
types of surfaces of certain sizes that are spaced and arranged 
relative to each other. Consequently, a component is manu-
factured by producing the surfaces that bound the shape. Sur-
faces may be:

1. Plane or flat.
2. Cylindrical (external or internal).
3. Conical (external or internal).
4. Irregular (curved or warped).

Figure 1.6 illustrates how a shape can be analyzed and broken 
up into these basic bounding surfaces. Parts are manufactured 
by using a set or sequence of processes that will (1) remove 
portions of a rough block of material (bar stock, casting, 
forging) to produce and leave the desired bounding surface; 
(2) add portions of material (welding, additive manufacturing); 
or (3) cause material to form into a stable configuration that 
has the required bounding surfaces (casting, forging). Con-
sequently, in designing an object, the designer specifies the 
shape, size, and arrangement of the bounding surface. The 
part design must be analyzed to determine what materials 
will provide the desired properties, including mating to other 
components, and what processes can best be employed to 
obtain the end product at the most reasonable cost. This is 
often the job of the engineer.

Roles of Engineers in Manufacturing
Many engineers have as their function the designing of products. 
The products are brought into reality through the processing 
or fabrication of materials. In this capacity designers are a key 
factor in the material selection and manufacturing procedure. 
A design engineer, better than any other person, should know 
what the design is to accomplish, what assumptions can be 
made about service loads and requirements, what service envi-
ronment the product must withstand, and what appearance 
the final product is to have. To meet these requirements, the 
material(s) to be used must be selected and specified. In most 
cases, to utilize the material and to enable the product to have 
the desired form, the designer knows that certain manufactur-
ing processes will have to be employed. In many instances, the 
selection of a specific material may dictate what processing 
must be used. On the other hand, when certain processes must 
be used, the design may have to be modified for the process to 
be utilized effectively and economically. Certain dimensional 
sizes can dictate the processing, and some processes require cer-
tain sizes for the parts going into them. In converting the design 
into reality, many decisions must be made. In most instances, 
they can be made most effectively at the design stage. It is thus 
apparent that design engineers are a vital factor in the manufac-
turing process, and it is indeed a blessing to the company if they 
can design for manufacturing, that is, design the product so that 
it can be manufactured and/or assembled economically (i.e., at 
low unit cost). Design for manufacturing uses the knowledge of 
manufacturing processes, and so the design and manufacturing 
engineers should work together to integrate design and manu-
facturing activities.

Manufacturing engineers select and coordinate specific 
processes and equipment to be used or supervise and man-
age their use. Some design special tooling so that standard 
machines can be utilized in producing specific products. These 
engineers must have a broad knowledge of manufacturing pro-
cesses and material behavior so that desired operations can be 




